The SHOOTLESS2 and SHOOTLESS1 genes are involved in both initiation and maintenance of the shoot apical meristem through regulating the number of indeterminate cells.

نویسندگان

  • Namiko Satoh
  • Jun-Ichi Itoh
  • Yasuo Nagato
چکیده

To characterize the SHL2 and SHL1 genes in detail, we analyzed three strains carrying weak alleles of SHL2, shl2-6, shl2-7, and shl2-8, and one weak allele of SHL1, shl1-3. In contrast to strong alleles, which result in lack of shoot meristem, strains bearing these weak alleles formed shoot meristem frequently during embryogenesis. In shl2-6 and shl2-7 mutants, the meristem was lost during seed development. Only the shl2-8 mutant could survive after germination, but it showed abnormal initiation pattern and morphology of leaves. In strains bearing the weak alleles, the shoot meristem was composed of a small number of indeterminate cells and ultimately converted into leaf primordium. The shl1-3 mutant showed phenotypes similar to those of shl2-8. Thus SHL2 and SHL1 are required for both initiation and maintenance of shoot meristem. In shl2 mutants, there was a positive correlation between the size of the expression domain of OSH1 representing the number of indeterminate cells, the frequency of shoot meristem initiation, and the duration of meristem survival. Thus the shoot meristem will not initiate in an "all-or-nothing" fashion, but is formed in various degrees depending on the strength of the alleles. Double-mutant analyses indicate that SHL2 functions upstream of SHO to establish proper organization of the shoot meristem.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

THE EFFECTS OF SALT STRESS ON THE SHOOT APICAL MERISTEM AND LEAF GENIERATION IN SUNFLOWER (HELIANTNUS ANNUUS L.)

Sunflower (Helictnthur annuus L. cvs Mehr Shafagh) seedlings were grown in nutrient solutions containing 20.5 to 70.4 mM NaCl and 0 as the control. The effects of salinity on developmental changes occurring in the shoot apices of plants were studied. At 20.5 mM NaCI concentration, the leaf emergence rate and plastochron index of Shafagh increased significantly, but this phenomenon was not o...

متن کامل

Shoot organization genes regulate shoot apical meristem organization and the pattern of leaf primordium initiation in rice.

The mechanism regulating the pattern of leaf initiation was analyzed by using shoot organization (sho) mutants derived from three loci (SHO1, SHO2, and SHO3). In the early vegetative phase, sho mutants show an increased rate of leaf production with random phyllotaxy. The resulting leaves are malformed, threadlike, or short and narrow. Their shoot apical meristems are relatively low and wide, th...

متن کامل

Pattern formation during de novo assembly of the Arabidopsis shoot meristem.

Most multicellular organisms have a capacity to regenerate tissue after wounding. Few, however, have the ability to regenerate an entire new body from adult tissue. Induction of new shoot meristems from cultured root explants is a widely used, but poorly understood, process in which apical plant tissues are regenerated from adult somatic tissue through the de novo formation of shoot meristems. ...

متن کامل

The Arabidopsis OBERON1 and OBERON2 genes encode plant homeodomain finger proteins and are required for apical meristem maintenance.

Maintenance of the stem cell population located at the apical meristems is essential for repetitive organ initiation during the development of higher plants. Here, we have characterized the roles of OBERON1 (OBE1) and its paralog OBERON2 (OBE2), which encode plant homeodomain finger proteins, in the maintenance and/or establishment of the meristems in Arabidopsis. Although the obe1 and obe2 sin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genetics

دوره 164 1  شماره 

صفحات  -

تاریخ انتشار 2003